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ABSTRACT

The design of high order control systems by parameter

optimization usually involves a great deal of computation.

Round-off errors in machine computation may lead to inac-

curate results that in many cases may prevent the continu-

ation of the optimization procedure.. Some of the numerical

operations involved in a currently used optimization tech-

nique are discussed and analyzed with special attention to

the numerical accuracy. Alternative methods are suggested

for more accurate and cost effective solutions.
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CHAPTER 1

BACKGROUND AND PROBLEM IDENTIFICATION

1.1 The Design of a Control System by Parameter Optimization

The design problem that raised the need for this work

is the one of finding the optimal set of prespecified para-

meters of a fixed configuration control system. A criterion

for the design can be derived by some evaluation of the sys-

tem response to some standard input. If the system's trans-

ient response to a step input is weighted by some criterion

and integrated along all time, a performance index can be

defined, the minimization of which gives the optimal design.

In the case of a linear system, whose state vector sat-

isfies the equation:

x(t) = Ax(t) x(O) = (1.1)

such a performance index can be given the quadratic form:

PI = 0T w x + f x T Q x dt (1.2)

0

where x is the transient state vector, x is the initial-0

transient state vector and W and Q are positive semi-defin-

ite weighting matrices.

The integral expression in (1.2) can be presented more

conveniently by:
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x TQx dt = tr [Q-X] (1.3)

where tr denotes the trace of the matrix, and where:

X = x T dt (1.4)

Using equation (1.1):

d T *T * T T T T
(x x) = x x + x x = x x A + Ax x (1.5)dt

and integrating both sides along all time for a time invari-

ant system gives:

T T T :
x x (t=-) - x x (t=0) =XA + AX

For a stable linear system, the transient response vanishes

as t + m, and we get that the state matrix X must satisfy

the equation:

T
AX + XA = -X 0  (1.6)

where:

X = x x (1.7)

1.2 The Model Performance Index

The Model Performance Index was first suggested by

Rediess '[11] and was improved by Palsson [101 for applica-

tion in an automatic optimization algorithm. The theory is

developed in these two references and will not be described

here. A brief outline of some results, applicable in an

optimization procedure is necessary, however, for the under-

10



standing of some computation operations analysed in the

following chapter.

It is desired to approximate the step input response of

a system whose transfer function is:

bGs + ...... +bls + b 0
G (s) 1

s s + anls +n-+....+as+a 0  (1.8)

n-1 1 0 (1.9)

to that of a model whose transfer function is:

ks + ....... +81s + B0Gm(S) = £
s + ae_ls  +....lS0+a .... :: (I. 9)

The model is required to satisfy the condition:

Y - k < n -.m

A new transfer function that has no zeros, and whose denomin-

ator is the cascaded system denominator and model numerator,

is formed:

a0 0G(s) kk n n-I 1
(ks +..... + 1s+ 0)(s +an-s +.....+als+a 0 )

(1.10)
with the initial conditions:

b0
x -

(i+l) 0  0 1 <i < n-m

i-i
x (i+l)= bn-i - C an-i+j X(j+1)0 n-m<i<n

j=n-m

(1.11)
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The Model Performance Index is defined as:

PI = xTQx dt (1.12)

where:

T
Q -

O0O (1.13)

& is the model characteristic coefficients vector presented

in the n'th dimension state space:

&T =[a0,...lat- 1 0 ' 0 .. 0  (1.14)

x in the equation (1.12) is the transient state Vector of the

system represented by equation (1.10) in response to the in-

itial conditions(l.ll). By use of expressions derived in the

previous section, the performance index can be expressed as:

P1 = tr[Q*X] (1.15)

X must satisfy the matrix equation

AX + XAT =-X (1.6)

where:

X0 = x 0x 0  (1.7)

1.3 The Solution of the State Matrix X

The solution of equation (1.6) for the matrix X is a

major concern of this thesis. Palsson [101 has shown that

when the system matrix A is written in the phase variable

form:

12



0 1 0 0.....0

0 0 1 0.....0

A =

-a0-a a......... an-1  (1.16)

the first column of the state matrix X, x1 ,can be computed

by:

x =-E E x-1 n -1 0
n-i (1.17)

where x 0  is the (n-i)'th column of the matrix X0 and the
n-i

matrices Ei are defined by the relationship:

E. = -AE. + a niI l<i<n (1.18)

with

E =I

The remaining columns of the matrix X are computed by the

relationship:

x. = -Ax +x-1 -- 1 -0.
1 (1.19)

The computation of these expressions is discussed in detail

in Chapter 2.

1.4 The System Transfer Function Coefficients

A method for obtaining the transfer function of a com-

licated (multi-loop with a multi-input multi-output control-

led member) system given by its components was developed by

Whitaker [13], Griffen [4] and Beyers [1]. It consists of

13



the following generalized steps:

1. Obtaining the system state equations in the form:

x = Fx + Gu

y = Hx + Ju (1.20)

where x is the state vector, u is the input vector, y

is the output vector and F, G, H, and J are properly

dimensional matrices.

2. Obtaining the transfer function matrix by:

y = [H[sI-F]- G + J] u (1.21)

This method is used to obtain the system coefficients which

make up the matrices A and X0 in equation (1.6). Although

the accuracy of the computation at this stage is not analysed

in detail in this work, it should be pointed out that the

large number of arithmetic operations done here especially

for high order systems, has been found to be a source of

significant numerical errors. The accuracy of the computed

performance index cannot be any better than that introduced

in the matrices A and X0.

The error in the system coefficients may affect the min-

imum search procedure mainly in two ways:

1. When the performance index first increases in a step,

it is normally assumed that the minimum point lies

somewhere along this step. In the presence of signifi-

cant inaccuracies such an interpretation of the perform-

ance index increase may be false. Taking a shorter step

14



in this case may even give further increase of the per-

formance index (this problem is later referred to as

the "performance index increase in half a step").

2. In the current optimization program used at the

Measurement Systems Laboratory at M.I.T. and applying

the methods discussed in this chapter, the gradient

method is used for the search of the optimum. The

derivatives of the system coefficients with respect to

the design parameters are used to produce the gradient

at each step. These derivatives, which are computed by

incrementation of the parameters and division of the

corresponding changes in the coefficients by the incre-

mented parameters values, are very sensitive to the

accuracy in the computed parameters. In other words,

if the error in the computed coefficients is of the

order of the expected incremental change in the coeffi-

cients, then the resulting derivatives and gradient

values would be completely incorrect.

These two problems are considered again in Chapter 4 where

an alternative method is discussed.

1.5 Scaling the System Coefficients

A large number of operations involving matrices and

vectors take place in the solution of equation (1.6).In some

cases significant inaccuracies may occur when elements appear

in certain arrangements of magnitude in matrices and vectors.
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These cases are discussed in Chapter 2. Scaling these

matrices and vectors so as to rearrange the relative magni-

tudes of the elements may improve the results significantly.

Since all the elements in equation (1.6) consist of system

coefficients, the desired scaling of matrices and vectors

can be obtained in most cases by scaling the system coeffi-

cients.

One way of scaling the coefficients is changing the time

scale. Since the units of the coefficients are powers of

time, changing the time scale can change the magnitude of

the coefficients in the desirable way. This is illustrated

in the following:

Characteristic coefficients before scaling:

a0 , a ....an-1

Characteristic coefficients after time scaling:

fn a' f n- al ....f a ,l

where f is the scaling factor. By selecting a value for f,

the coefficients can be ordered in an ascending or a descend-

ing order of magnitudes as desired. This type of scaling

will be referred to later as time scaling.

Another way of scaling the system coefficients is add-

ing a pair of a pole and a zero of the same value (or at the

same location in the complex plane) which, of course, does

not change the characteristics of the control system itself.

The relations between the characteristic coefficients

16



and the poles are as follows:

a0 = product of all poles

a = sum of all possible products of n-i

out of n poles

a 2 = sum of all possible products of n-2

* out of n poles

anl = sum of all poles

It follows that adding a pole-zero pair near the origin, for

example, would decrease ao, not affecting an-_ significantly,

since:

a 0 = pl.P2 .......... Pn

and

anl = Pl+P 2+ ....... p+E

where pl"..pn are the original system poles, and 6 is the

additional scaling pole.(assuming that E is not of the mag-

nitude order of the other poles). There is freedom in the

location of the pole-zero pair and the corresponding effect

on the coefficients. This type of scaling will be referred to

later as pole-zero scaling. There are some operations in the

solution of equation (1.6) (as discussed in sections 2.2

and 2.3) where time scaling of the coefficients cannot im-

prove the accuracy, but pole-zero scaling may be used effec-

tively for this purpose. The disadvantage of the pole-zero

scaling is that it increases the order of the system. The

17



trade-off between the positive effect of scaling and the neg-

ative effect of increased order on the accuracy must then be

considered.

1.6 Severe Inaccuracies Occurance

There were some typical cases in which severe inaccura-

cies occurred, preventing the completion of the optimum search

procedure. It is impossible, however, to point out one gen-

eral reason for the occurance of the problem. Severe inac-

curacies result in phenomena like negative performance index

values, the "performance index increase in half a step",

large values of performance index when small ones are expect-

ed, and other results that just do not make sense.

The problem has occurred in cases where the complex fre-

quency range of the system modes of response was large, or

in other words, the system poles were far apart. One such

example is the presence of the phugoid mode in the equations

of a controlled aircraft. This mode has relatively low frequen-

cy and small magnitude. When the "short period approximation"

was exercised and the phugoid mode was eliminated, the severe

inaccuracies in the computation disappeared. The addition

of a remote pole to a system may also cause the appearance

of severe inaccurracies in the computation. In such cases

the problem can be avoided by elimination of low residue

mQdes. But this is not always the case. In many situations

low residue modes are not easy to identify and to isolate,
18



especially in the process of optimization, and it is not

always clear that such elimination would solve the inaccura-

cy problem. Thus, rather than treating the different cases

separately, the approach to the problem was by investigation

of the numerical operations trying to identify the potential

sources of inaccuracies and to suggest adequate solutions.
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CHAPTER 2

THE NUMERICAL COMPUTATION

2.1 Introduction

The method proposed by Palsson for the solution of the

matrix equation (1.6) was presented in section 1.3. In this

chapter each step of the solution procedure is discussed in

terms of the explicit algebraic expressions and the arithme-

tic operations, with special attention to the numerical ac-

curacy obtained in these operations. Some parts of the com-

putation are discussed only for the purpose of shedding some

light on the various stages of the procedure, so that

sources of significant inaccuracies that may occur can be

spotted more easily.

2.2 The Computation of the Matrices E. l1in

The matrices Ei are obtained by the relationship:

E. = -AE 1 + A I l<i<n (1.18)
1 i-1 n-l

with

E =I

This part of the computation can be best investigated by con-

sidering the algebraic expressions of the elements of these

matrices. The first few matrices are given in Appendix A so
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that the nature of these and of higher order Ei matrices can

be understood.

From the explicit expression of the Ei matrices, it can

be learned that the elements at lower positions in the col-

umns contain higher powers of the system characteristic

coefficients. The arrangement of the coefficients in the

matrices elements may affect the accuracy of the computation

in two ways:

1. inaccurate computation of the matrices elements;

2. ill conditioning of the matrix En with respect to

its inversion in a later stage of the procedure.

To understand the first possibility it should be realiz-

ed that in the computation of low position elements of the

Ei matrices,small and large numbers are normally added to-

gether with considerable loss of low position digits.

Notice/j for example, that the element:

E5(5,5) = 2 a + 2 a 3 an - 2a a + 2a2 a5 n-5 n-3 n-2 n-4 n-i n-2 n-i

2 3 5+ 6a an - 6a _1 + 2a -
n-3 n-1 n-2 n-i n-i

would be normally dominated by the higher powers of an-_l,un-

less some scaling of the coefficients is done. Notice that

time scaling of the system coefficients would have no effect

on the accuracy of this computation, since such scaling is

equivilant to multiplying the matrix element by a factor,

leaving the relative magnitudes of the addents unchanged.
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Using a scaling factor f gives, for example:

E (5,5) = 2(f 5 a ) + 2(fan3  f 2 q ) -2(f 4 an 4 fa 1 )5 n-5 n-3fn-2
scaled

2 2 3 2+ 2((f2an_2 ) 2 fa ) + 6(f a n 3 (fa ) 2 )

6(f 2a (fa ) ) + 2(fa n-)5n-2 n-i n-1

= f E 5 (5,5)
unscaled

Pole-zero scaling can be used effectively to control the

accuracy of this computation. Such scaling, as was dis-

cussed in-Section 1.5, can be used to magnify the value of

a0 and other low order coefficients with respect to an-i

without changing the value of an- 1 significantly. Scaling

would be done to make the addents close enough in magnitude

so that loss of low position digits is minimized.

The inversion of the matrix E is discussed later inn

this chapter. It is pointed out that ill conditioning of a

matrix with respect to its inversion occurs when the ele-

ments on the diagonal are significantly smaller than ele-

ments to their right in rows. It is evident from the E. ma-

trices (consider E 5 ,for example) that such situations can be

controlled by either time scaling or pole-zero scaling of

the system coefficients. A situation where elements on the

right of the rows are larger than those on the left can be

reversed by such scaling.

One may argue that changing the order of the operations

in the computation of the E. matrices so as to sum small num-1

bers first and then add the larger numbers, minimizing loss

22



of digits, would be useful. It can be verified, however,

that in general these operations are indeed done in such

order, as each E. matrix is computed from the previous one.

n
2.3 The Computation of X Ei_ X

i=1 n-i
n

x 0  in the expression , E i-,x is the (n-i)'th
n-i i=l n-i

column of the initial conditions matrix:

xx x 0 x0  .. . . . . . . . . .. . x 0 x01x01 X2 1 n

Xo2 X0 1

TX =xx =0 -0--0

x 0  x 0  x 0x 0  ............. x 0  x 0n 1 n 2 n n(2.1 )

The initial conditions are computed by equations (1.11) as

expli'cit functions of the system coefficients. Consider the

case: n=8, m=5, £=3, then:

bx 0 =

1X a0

x0 =0

x = 0x = 0

0 b5
4

x0 = b 4

23



x06 = b3 - a6b5 - a7b 4

x07 = b2 - a5b 5 - a6b 4 - a7b3 + a7a6b 5 + a7a7b4

x0 = b - a4b 5 - a5b 4 - ab 3 + a6a6b 5 + a6a7b 4

- a7b 2 + a7a5b 5 + a7a6b 4 + a7a7b 3 - a7a7a6b 5

- a7a7a7b4 (2.2)

The higher order initial conditions involve higher order

products of the system's coefficients, and normally they are

significantly larger than the lower order ones. Computation

of high order initial conditions involves a great deal of

multiplications and additions, and single precision is in-

adequate if accurate results are desired. Since each one of

the initial conditions depends linearly on one b coefficient,

it can be argued that inaccurate computation would result in

initial conditions corresponding to another set of b coeffi-

cients, or, in other words, to another system. This may

cause problems like the "performance index increase in half

a step", and inaccurate computation of the gradient of the

performance index with respect to the design parameters,

that were discussed in Chapter 1. The accuracy of x01 is of

special importance. Since in the optimization algorithm a

system static sensitivity of 1 is assumed, the value of x

must be 1. Even a slight error in this value would result

in a steady state difference between the model's and the

system's responses, which, at least theoretically, should

24



produce an infinite performance index. This point was not

considered in the original program where the value of x0

was computed in 3 steps, which in single precision floating

point arithmetic resulted in 2 incorrect digits out of 8.

This error has lead to "awkward" values of performance index.

When the value of x01 , was fixed at-1 (instead of the unnec-

essary computation) sufficiently accurate results were ob-

tained.

The error in x01 had a major effect on the computed per-

formance index in the case of one system, but had no signifi-

cant effect in the case of another system of the same order.

This is explained by the "weighting" of the elements x0. x0.

of the X0 matrix by the E. matrices, first in the sum
n 1 n

11

Ei-1 x and then in the product E 1  E. x
i=l n-i i=l n-i

As was shown in 2.2 the lower order E. matrices contain many

zero elements. It is easy to realize that in the vector
n

Ei-1 x0 the first element is mostly affected by pro-
i=l n-i
ducts of x . Elements at the lower positions in the vector

1
are less affected by x0i . This effect depends, of course,on

the relative magnitudes of the elements of E., or the weight-

ing imposed by these matrices. Then, in the product
n

- 1nE Ei-i x0 ,the contribution of the elements of the
ni=l n-i

n
vector E i-l x0 depends on the weighting by E .When

i=l n-i

-=the first elements in the first row of E-1 are considerably

25



larger than other elements, the error in x0 is weighted most

heavily in the first element of the product vector xl. This

indeed was the case when the problem was first encountered.

Fixing the value of x01 at -1 resulted in a significant

change in X(l,l) (x (1)), the other elements remaining prac-

tically unchanged, which in turn gave the desired correction

in the computed performance index.

The algebraic expressions of the elements of Eilx0n-i
are extensive and giving them here in detail seems unneces-

sary (besides, they can be easily obtained from the given

Ei and X0 matrices). It should be noted, however, that this

part of the computation involves a great deal of arithmetic

operations and may be a source of severe inaccuracies. If

these inaccuracies are found to influence the computation

significantly, rearranging the operations so that small and

large numbers are summed in an optimal order (to minimize

loss of low-position digits) should improve the results. If

this is done in the computation of the product vectors

Ei-1 x0 onnly, the additional storage required is negligable

(n words), but the additional check operations may be time

consuming. The alternative of extended precision computation

has the disadvantage of having to use a different program-

ming language (see 2.4) if precision higher than double is

desired. The cost of interfacing languages in a program is

considerably high, and the trade-off between the different

possibilities must be considered.
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Considering the corresponding expressions in the mat-

rices Ei and X0, it can be verified that time scaling of the

system's coefficients is equivilant to multiplying the re-

sults by a factor, and thus, has no effect on the accuracy

in the computation of the vectors Eilx0 or of the sum
n n-1

Eil x0  (see a verification of a similar argument in
1= n-i
2.2). Pole-zero scaling can be used effectively to arrange

this computation so that small numbers are summed first and

then added to the larger numbers. This can be done by

placing the pole-zero pair on the left half of the real

axis far from the origin which would make a0 appreciably

smaller than an_1 . Notice, however, that such scaling may

have an undesirable effect on the E matrix, increasing the

elements to the right of the diagonal in the rows. As is

discussed in section 2.4 this may "ill condition" the matrix

with respect to inversion.

2.4 The Computation of N1 and Matrix Inversion

xI is the first column of the state matrix X. It sat-

isfies the equation:

n
En = Ei_. x

i=l n-i (2.3)

or

-1 S i -x =E E x
S n il n-1 (1.17)

This section is mostly concerned with the numerical errors
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arising in the inversion of the matrix En for the solution

of x -1

A popular method for machine inversion of matrices is

the Gauss-Jordan method. This method is described in de-

tail in references [5], [6], 17], and [12] and will not be

presented here. It is , however, the matrix inversion

method referred to in the following discussion.

A significant loss of accuracy may occur when elements

on the diagonal of the matrix to be inverted are consider-

ably smallrr than elements to their right in the rows.

Such situations may be avoided by reordering the rows of the

matrix so as to place the larger elements on the diagonal.

Such reordering may require extensive check and bookkeeping

operations for high order matrix inversion. In the case of

the En matrix such a solution is inadequate in general,

since elements in all the rows appear in a similar arrange-

mentof relative magnitudes (see Appendix A).

The usefulness of scaling a matrix by a linear transform-

ation before scaling is questionable. The scaling and rescal-

ing transformations may cause additional errors. Multiplying

the matrix elements by powers of 10 when floating point arith-

metic is used may result in a matrix that is isomorphic to

the original. Indeed, attempts to use such scaling by a trans-

formation matrix did not improve the inversion accuracy.

Scaling the system characteristic coefficients is, as
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discussed in section 2.2, a useful tool for initially arrang-

ing the elements of the E matrix in a desirable order ofn

magnitudes. This is illustrated in an example case in Chap-

ter 3.

The situation of diagonal elements that are considerably

smaller than elements to their right may arise at a later

stage of the inversion procedure. How the pre-conditioning

of the matrix should be done to avoid such cases is not

easy to determine, since the relation between the elements

of the res"iting matrix and the elements of the original ma-

trix is not a simple one. One way to handle such situations

is suggested by Hellerman [5, p.57]. It consists of using

the largest element in the corresponding column rather than

the diagonal as a pivot element, while recording the place

of this element. Then, since the rows and the columns of

the inverse matrix appear scrambled, rearranging them in

the right order (the Gauss-Jordan method is referred to as

the inversion method).

A number of measures.and criteria for the inaccuracy in

matrix inversion and linear equations solution procedures

can be found in the literature. They all fail to give an

exact measure of the inaccuracy (to indicate how many digits

in a result number are incorrect) and, at best, give an indi-

cation that some significant inaccuracy has occured in the

computation. One such check often used is obtained from the

elements of the difference matrix:
-l

D = AA -I
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In our case of interest this check is hardly satisfactory.

An investigation has shown that when the inverse of En con-

tains elements considerably different in order of magnitude,

the small elements are computed with large errors. In the
n

-1 E X0 the contribu-
computation of the product En Ei- x the contribu-

i=l n-i
tion of these elements is negligible, and even relatively

large errors in them would have no effect on the final re-

-1
sult. Yet, when the product E E - is computed for then n

check, these elements are multiplied by large elements of

the matrix En, and the errors in them may produce appreci-

ably large elements in the check matrix D. On the other

hand, errors in the large elements of E - 1, which can affect

the computation of xl significantly, may not be detected by

the check at all. Thus, such checks can be used to obtain

a general idea about the accuracy of the computation but

not as ,,,a measure of it, especially not as a basis for com-

parison between numerical results.

Absolute large values of the matrix elements (not only

their relative magnitude with respect to each other) have

been found to affect the accuracy of the matrix inversion.

Severe inaccuracies have occured in some practical cases

when the matrix determinant was very large. When the ele-

ments of the matrix were divided by a certain factor before

and after the inversion, accurate inversion was obtained in

these cases.

A different approach to the solution of the vector x
30
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in the matrix equation:
n

Enx = E i- x0
i=l n-i (2.3)

is usually referred to as the indirect or the iterative ap-

proach. The Gauss-Seidel method is a popular iterative meth-

od used for machine solution of systems of linear equations.

It is described along with some other such methods in refer-

ences [6] and [7], where it is also pointed out that these

methods may or may not converge on the solution depending

on the numerical values involved, even in the absence of

round-off-errors.

If a sufficiently accurate computation of x cannot be

obtained by scaling the En matrix, an extended precesion ver-

sion of the matrix inversion algorithm may be used. Since

IBM/370 FORTRAN does not have a built-in extended precision

facility, the MINV program from the IBM PL/I Scientific

Subroutine Package [81 has been modified to invert a matrix

in quadruple precision. This program can be called by the

FORTRAN optimization program whenever an extended precision

inversion is desired. The modified program and the inter-

face control cards are given in Appendix B.

2.5 The Remaining Columns of the Matrix X

After the first column of the state matrix X is comput-

ed, the remaining columns are computed by equation (1.19):

x_ = -Ax.i + x
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e.g. 0 -1 0 0 ... O x 0 1x 0 1

0 0 -1 0 ... 0 x 02x0

*2 1
* xI +

a 0  a 1  ........... an- 1  x0  XO0n

Note that except for the last element in each column xi all

the elements are obtained by shifting the elements of the

previous column upwards with an inverted sign and adding an

element from the previously computed X0 matrix. Both oper-

ations do not produce any numerical error. In Figure 2.1 the

elements of an 8'th order state matrix X that are computed

by shifting the elements of the first column and adding an

element from the X0 matrix are denoted by x, and elements

that involve multiplication of the system's coefficients by

a previous column are denoted by *. The computation of the

* elements in this stage from previously computed values

may add to their inaccuracy.

x x x x x x x x

x x x x x x * *

XXx* ****

Figure 2.1 - Additional Inaccuracy in the Computation

of the Remaining Columns of an 8'th order X Mateix

In the case of the Model Performance Index only the elements
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that are both in the first £+1 rows and in the first Z+1

columns ( L being the model's order) take part in the com-

putation of the performance index (e.g. in the case of an

8'th order system and a 3'rd order model only the elements in

the 4 x 4 square in Figure 2.1 affect the result). It fol-

lows that for most practical cases this part of the compu-

tation does not introduce any numerical inaccuracy at all.

2.6 The Computation of the Performance Index

The performance index is computed by equation (1.15):

PI = tr [Q-X]

where Q is the weighting matrix in the performance index and

X is the state matrix whose computation was discussed before.

Except' for the case of very high order systems and when the

correct value of PI is close to zero, this part of the com-

putation should not introduce additional severe inaccuracy.

If the expected value of PI is small, then accurate low-po-

sition digits must be obtained, and single precision may not

be sufficient. Also when the order of the system is high,

the large number of multiplications and additions may result

in significant loss of digits. Note that in the case of the

Model Performance Index the elements in the matrix Q that

are both not in the first £+1 rows and not in the first +1

columns are all zeros, and thus, the amount of computation

in this stage depends only on the order of the model.
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CHAPTER 3

AN EXAMPLE CASE

3.1 Introduction

Because of the nature of the problem the numerical ex-

ample cannot be of a simple, low order system. A real in-

accuracy problem encountered in a control system design is

discussed in order to demonstrate some of the inaccuracy

problems and their solutions as described in the previous

chapters.

3.2 The Example System and the Inaccuracy Problem

The example control system is given by its mathematical

block diagram in Figure 3.1. The numerical values are given

in Figure 3.2(a) in the format of the System Description Pro-

gram[12]. The rows of the SYS and the SIG matrices corres-

pond to the blocks in the block diagram. The last two rows

of these matrices represent the model zeros that are cascad-

ed to the system to use the Model Performance Index. The

controlled member state matrices and the design parameters

location and initial values are also given. The computed

values of the over-all transfer function characteristic co-

efficients (ACOF(I)), the numerator coefficients (BCOF(I))

and the initial condition vector are listed in Figure 3 .2 (b).

34



The transfer function coefficients are time scaled by a fact-

or of two.

Significantly inaccurate computation was experienced in

attempting to optimize this system. The numerical values of

the matrix E, the determinant of this matrix and the state

matrix X corresponding to the initial values of the design

parameters are given in Figure 3.3 for comparison with other

cases. The computed performance index in this case was 0.052

while the correct value is 0.26, as was verified by integra-

tion methods. Notice that the computed value of the first

element of the matrix X is 0.55. The correct value of this

element was found to be 0.75. The other elements of the

matrix X are sufficiently accurate.

3.3 The Practical Solution of the Inaccuracy Problem

In order to obtain more accurate results in the computa-

tion of the example case the value of the first initial con-

dition was fixed at -1, and since the value of the E matrix

determinant was very large, all the matrix elements were de-

5
vided by 10 before the matrix inversion. The resulting En

and X matrices are given in Figure 3.4. The given elements

of the En matrix are before reduction for comparison with

other cases and the determinant was computed after reduction.

As can be seen in the figure, the computed value of the first

element in the matrix X is now 0.75 while the other elements

are considerably closer to the ones before the correction.
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The resulting performance index value was 0.26, differing by

less than one percent from the value obtained by integration.

Similar agreement between the performance index values com-

puted by integration and the ones computed by the method

discussed in this work was experienced in the following steps

of the optimization. It is interesting to note that the

elements at lower positions in the columns (or the rows) of

the X matrix are closer to the correct values, which is in

agreement with the error weighting effect, discussed in sec-

tion 2.3

The correction of the initial condition has, of course,

no effect on the matrix E . This correction affects the sum
n

Ei x while the reduction of the matrix E elements
i=l n-i
affects the matrix inversion, so that the first column of the

-1i1 i fet bmatrix X which is equal to E -  E 1x0  is affected by
n i=l' n-i

both corrections. Indeed, it was found that both corrections

were necessary in this case. When only x0 was corrected

and the reduction of the En matrix elements was not exercis-

ed, negative performance index values were obtained at later

steps of the optimization.

3.4 Scaling the Transfer Function Coefficients

As was discussed in the previous chapters scaling the

transfer function coefficients may be useful in conditioning

matrices and vectors for more accurate computation. Consid-

er the case where a pole -300 was added to the example system

presented in section 3.2. The optimization program current-

36



ly used at the Measurement Systems Laboratory at M.I.T. re-

duces the system coefficeints by time scaling to prevent large

values of the E matrix elements which are undesirable asn

discussed previously. The scaling that was done in the re-

mote pole case is shown in Figure 3.5. This scaling has re-

sulted in an unfavorable conditioning of the matrix En where

some of the diagonal elements are smaller than elements to

their right, as shown in Figure 3.6.

When the scaling factor was inverted as shown in Figure

3.7 and the increase of the E matrix elements was handledn

by dividing them by 1015, the resulting condition of the En

matrix was a desirable one, as the elements on the diagonal

dominate in magnitude the elements dn their right. This is

shown in Figure 3.8. The resulting error in the computed

performance index was in this case 30% of its value.

It is not argued that changing the condition of the ma-

trix E ,:would usually improve the accuracy of the computation.

In some cases it was found to have no effect at all. The

possibility to control the condition of the matrix by such

scaling should be noted and used when necessary. However the

problem of large values of the En matrix elements should be

treated directly by dividing these elements by a factor and

not by scaling. Scaling should be used on a selective basis

to condition matrices and vectors for specific operations

like the matrix inversion. The establishment of more specific

criteria for the usefulness of such scaling in different cases

would provide the control system designer means to obtain more

accurate computation in many practical cases.

37



CONMEMSUM. 2 GIN SUM. REAL
4) PT. PT. (+ PT. POLE

) N I NJTG .S

12 11
TEDTAG GAIN ,

1 LEDLAG

Figure 3.1-A Mathematical Block Diagram and Data Input Definition of the

Example Control System



SYS MATRIX SIG MATRIX
SUIMP 0.0 0.0 0.0 0.0 1 13 2 0 0G IN 0.14800 0O0 C~0 0,0 2 0 3 0 0
SUINP 0.0 0.0 0.0 0.0 3 12 4 C 0
GAIN 0.75000 0.0 0.0 0.0 4 0 14 0 0
INTG 0.0 0.0 C- 0.0 '  0.0 0 14 15 1 3
SUMP 0.0 0.0 0.0 O.0 4 15 16 0 0
REAL. 0.08000 0.0 0.0 0,0 0 16 5 2 3
C', 0.0 0.0 0.0 ".0 5 0 6 3 4
SUAMP 0.0 0.0 0.0 0.0 7 6 8 0 0
GAIN 0,09100 0.0 0,0 0.0 7 0 11 0 0
LEfL 0.023300 .2500) 0.0 0.0 11 0 12 5 0
LEDL 0.40000 0.50000 0.0 0,0 0 6 13 8 0
REAL U.34400 0.0 0.0 0.0 8 3 9 6 0
REAL 0.01630 0.0 C.0 0.0 9 0 10 7 0

PAR. NZO SYS MATRIX LOCATION PARo VAiUE
1 2 , 2 0.148
2 10 , 2 0.081
3 11 , 3 C.250
4 12 , 2 C.400
5 12 , 3 C,5C0

MIN PARAM INCREMENrTS -- .5;ooE-02 .3000CE-02 .2000OE-01 .2300C-01 .2000E-01

ICON 5

XCON ACON MATRIX BCON MATRIX
3 -. 6530 1065. -82.00
4 -. 1900E-01 -. I000E-01 -11.60

OCON CCON
6 -. 1130E-01 .4690F-02 2.914
7 .0 12.43 10

ITERATION NUMBER 0

DESIGN PARAMETER VALUES

0. 14900000E+00 0. 80999970E-01 C.25C000"0E+OC 0.3q999998E+00 C.500r0(0oE+90

Figure 3.2(a)-Input Data for the Example System in the System Description Program Format



SCALING NECESSARY, SCALE FACTOR 2.00

UNSCALFD OENOMINATOR CCE=FICIFNTS
0,7592E+07 0.2514E+08 0.2189E+08 0085438+07 0O1864F+07 0.2278+06 0.7886E+04 0.13693+03
0. 100E+C'1

UNSCALED NUMERATOR COEFFICIENTS
0.8708E+07 0.1995E+08 0.1325E+C8 0.21l6E+07 G.127+06 0.933E+03

SCALED DENOMINATOR COEFFICIENTS
0.2965E+05 0.1964E+06 0.3421E+06 C.2670E+06 0.1165F+06 0.2847E+05 0.1971E+D4 1.6843F+02
O.IOCOE+01

SCALEP NUMERATOR COEFFICIENTS
0 0.3402E+05 0.1559E+06 0.2070E+06 C.i111E+05 0.6418F+04 G.123P+033

AC:F = 0.2893E+05 0.1932E+06 0.3380E+C6 0.2651E+06 0.1161E:06 0.2838E+05 0.1966F+04 0.6833E+02 0.1000E+01

BCOF = 0.2893E+05 0.1326E+06 0.1761E+06 C.7750E+C5 C..5459E+C4 0.1053E+C3

INITIAL CONDITION VECTCR

-0.c9999982E+30 0.0 0.0 C.10529182E+03 -0.17354609E+04

-0.10867187E+05 0.13419100E+07 -0.3317G968E+08

Figure 3.2(b)-Computed and Scaled Transfer Function Coefficients and Initial

Condition Vector



DETERMINANT OF E= 0.155070+68

E MATRIX

0.0 -0.386400+36 0.O -0.5301 r+C6 0.0 -0.567530+05 3.0 -0.136660+03

0.395420+07 0.26402D+08 0.458000+R0 3.36223C+08 0.153390+09 0,387790+07 0,211850+06 0.933770+04

-0.270190+09 -0.180010+10 -0.312940+10 -0.242930+10 -0.104810+10 -0.249630+09 -0.14476'+08) -0.426190+16

0.123320+11 0.820690+11 0.142240+12 0.109940+12 0.47C610+11 0.11046D+11 0.589050+09 0.14645,)+08

-0.423770+12 -0.281720+13 -0,486770+13 -0.373980+13 -0. 15G000+13 -0.368530+12 -0.177400+11 -0.41267D+09

0.119410+14 0.793040+14 0.136650+15 0.104520+15 0.44181C+14 C.101190+14 0.442590+12 0.104570+11

-0.3025D0+15 -0.200840+16 -0.345490+16 -0.263520+16 -0,110980+16 -0.252560+15 -0,104340+14 -0.27195D+12

0.786880+16 0.522370+17 0.899", 10+17 0.6862Sr+17 0.289440+17 C.660710+16 0.281960+15 0.814750+13

X MATRIX.

0.550300+00 -0.500000+00 -0.527510+00 -0.395130-12 0.107740+03 -0.173550+04 -0.111300+05 0,13'750+07

-0.500000+00 0.527510+00 0,39513D-12 -0.244720+CI -0.121310-11 0.262c970+D+3 -0.554320+04 0.196720+05

-0. 527510+00 -0.395130-12 0.244720+Cl 0.121)01-11 -0.262970+C3 C.554320+04 -0. 106720+05 -0.265010+07

0.395130-12 -0.244720+01 -0121010-11 0o26207+03 -0,55432C+04 0,196720+05 0,265010+07 -0.921760+08

0.13774D+03 0.121C10-11 -0.262570+03 -0.554320+C4 C0. 163C(0+ -. 15, 590D+L7 -,.41160+08 u.238790+13

-0.173550+C4 0.262970+03 0.55-320+C4 0.106720+C5 -0.150590+07 0.30256D+08 -0.500480+08 -0.163110+11

-0.111300+05 -0.554320+04 -00196720+C5 0.265010+07 -0.4SI160+09 -0.590480+v8 0.3J8940+11 -0,.9,.-,36P+12

0.134750+07 0.196720+05 -0.265010+07 -0.921760+C8 0.238790+10 -C.163110+11 -0.400360+12 0.370410+14

Figure 3.3-The Matrices En and X Corresponding to Initial Parameter Values of

the Example System



DETERWINANT OF E= 0.155070+28

E MATRIX

0.0 -0.3864Y+06 0.0 - .530133+06 0.0 -C.56753D+0C5 0.0 -0.136560+03
0.305420+C7 0.264020+08 0.4583D+C8 0.362230+08 0.15339C+08 C.387790D07 0.211850+06 0,933770+04

-0.27019D+39 -0.180010+10 -0,312940+10 -0.24293P+1C -0.124810+1C -C.249630+9 -,.14476P+t8 -(0.426190+06
0.123320+11 0.R206(+11 0.142240+12 C.1 0940+12 0.470610+11 C.113460+11 0.58250D+09 0.146460+08

-0.423770+12 -0.281720+13 -0 486770+13 -00373980+13 -0.15c080+13 -0.368530+12 -0.177400D+11 -0 412670+09
0.110410+14 0.793040+14 .0.136650+15 . 104520+15 0.44110,+14 C.101190+14 ".442590+12 0.104570+11

--0.302580+15 -0.200840+16 -0.345490+16 -0.263520+16 -0.110980+16 -0.252560+15 -0.10434D+14 -0.27195D+12
0.786880+16 0.522370+17 0,89901D+17 0.686290+17 0.28944D+17 0.66')710+16 0.281,60+15 0.914750+13

X MATRIX

0.753170+00 -0.502000+00 -0.554450+00 -0.3816O-12 .107770+03 -0.173550+04 -0.111300+C5 0.134740+07
-0.500000+00 0.554450+00 0.3816830-12 -0.247650+01 -0.116860-11 0.26306D+03 -0.554320+04 0106710+05
-0.554450+00 -0o38163D-12 0.247650+01 0.116860D-1 -)0.263060+03 C.554320+34 -C. 16710+05 -0.2650D+07
0.381680-12 -0.247650+01 -0.116860-11 0.263260+03 -0.554320+04 0.196710+05 0.2,5010+07 -0.921750+08
0 107770+03 0.116860-11 -0 263060+03 -0 554320+04 0o 163060+06 -0.15059D+07 -0.401160+08 0.238790+10

-0.173550+04 0.263060+03 0.554320+04 0.196710+05 -0.150550+07 C.30256D+68 -0.59047D+08 -0.163110+11
-0.11130D+05 -0.554320+04 -0.196710+05 0.265C10+07 -0.4 1160+08 -0590470+08 0,30993D+11 -00900350+12
0.134740+07 0.196710+05 -0.26501D+07 -0.92176D+C8 0.23879D+10 -0.163110+11 -0.900350+12 0.37:,410+14

Figure 3.4-Corrected Values of the Matrices En and X of the Example Case (the

given Elements of En are before reduction)n



SCALING NECESSA4RY, SCALP FACTfrP 2 .C C

UNSCALED DEW'MI NATrR CCEFFI CT ENTS
O23 0 0 P + 0 0.7(2 1F-+10 0 6 1 C', 7+1(,) - 1.?t2EI 1~74~' 77~4) r.+T0 7 .403-'
0.43Pa+J3 Q1 .1, rT'2: +0

UNSCALED NU?~ERATOP CCEFF TOT NTS ___

0.2639E+I0j ---- i r).C+ 0CP 5-F +09 0 .I12 r+)D 0 .-k I'l -+Th

SCALED 0)FKCAT NATCQ rCCEFPIC.! ENTS
,)./,193E4-07 0. ?,7,F1-C, +~50E0 C.109i'3 0IO 10 .414~ )3?? 4 ~ .24-C
0.219m+1'~ 1' . +i-1

SCAL ED N LAF RA TCC--(F P 'I E\jTS
0).5154F+17 O .2362E+CP 0.1I37E+OP 0 r1*3q I +O O.o724P+)6 O.1P769+15

SCALING NECEFSSARY, SC4L*E rCTCP 4 40 0

~ UN~CALDpDNnl'[NATPR CnFFCICVPNTS
0. 449q3F±7 0.~9+805C~-S 0. 4C7c9F+T' - 0.1 702F+nQ- 0 .4; F+-,7 3 2 73+ 0D6

0.2I,9r+03 0.1ICOF-C

U'JSCALED N114FRAT1R C9FICFT
0. 5 154F -07 C .2 362 F +')P 0 .3 13'7 J + jp P Ip+O 3 ^,q7?AF<)6 r ~. I P.7 1-r-+ r

SCALED D)ENq;-q NATCP. CEF~r!FNTS .- -. -- -- --- --- -__

).9E77f +D4 0. 1 l64F+C(& 0. 40-A+06, 0.6174F+06 .0.9610Ei-6 .0.7A'F+W' .4 0 0.30P59i-14

11 OU0.3c 03 0 . I)n j1-+0 1

SCALF3) NtUM E'Trl CCEFFIC!FNTS
. 07+ 0. (7,? 2 5F 05 0. 245 1 F+06 11 2 15 7F +6 C .3 O3 9F -)5 0 . 1 17? )4

ACOF 0.8~56'ci-04 0.1145E+-06 0.4016!7+06 0.63 2qF+06 0.5521F.-06 0.276)F+-& C.40)77P4-050.0 i4 .C9E?

ACOF C.I0.c i-:01

RU), F 0.856,Ei-04 0.764+rq 0. .20~0 +0 C .I F3 5r +06 0.2~5;+05 0V7I t03

Figure 3.5-Scaling the System Coefficients of the Remote Pole Case



OFTERMINANT OF E= 0.35787D+36

E PATPIX

0.171250+05 0.2 C.307313 +0 6 .0 . 116+7 "0.3 .0 540n+ 0.0 0.21 9I4 +3
-0.18824D+37 - O. 2514&D+08--0 .A220+0P -. ? '~D+ 0 -. 127 -0 - 3. +7 -)f +,- -. +37 Q!+6 5 + - .241 D+r

0.226929+09 0. 7641 +10 0. 6723 0+1 0.1 3 1 1 2,4 +1 I 13 v + I1 0.454'4 +1 .. 5?7750+1 0.. e 5457 +0 0.?06C n+07
-0.17646D+11 -0.235 )+1? -0.2400+1? -. 1?79440+13 -0.11 53'0+13 -0.555-LCm+1 -3. 7 74D'l+11 -'.U+""+9'3 --.r T+

0.137920+13 C. 1R41+1 4 0.644470+14 0.131110+15 ,.R2-(-+1 4 0.473190+I4 r:.3?121+13 2.41-70+l 0.?172rL+11
-0.1 5190+15 -0.14 47+1V -. 4014l0+16 -0.77Cr 6+16 -0.675520+16, -r.301 7+16 -.1 475, +15 -0 . 1210+14 -0.-31~P+ 12

-. 797890q-16 0. 1C65(5 +! 0.37270+1 O.S0.P4750D+1 0. 51235+138 C.250'+0t+1: 3.41l+17 0.24121016 .7'"7f+14
-0. 60459q0+ 18-l0. R 73AR+1- 28~247D+?0 -0.4'3iC0?04 -7 .33?20+?0 -D.10 9730 + --.. 275+ I + 4 r73+ 1+1 R 5 n+ I

0.458040+20 0.51166D+21 0.214000+22 0.3356R9D+22 .204110+22 O.14t740+?2? . 011c +21 0.13845+20 0.405?5c+1l

Figure 3.6-The Matrix En of the Remote Pole Case after Scaling the System Coefficients



SCAL!N§ NECESSARY, SCALE FACTOR = 0050

UNSCALED DENOMINATCP CCEFFICIENTS
0.2300E+10 0.7626E+10 0. 6 65 9 F+10 0.2611E+10 0.5734E+09 0.7C89E+08 Oo,217E+07 0c4936:+05
0.4399E+03 0.10COF+01

UNSCALFD NUMERATOR COEFFICIENTS
0.2639+10 Oc6046E+10 004C15E+1i0 : C8835E+C 9 C 3 3112E+08 033001E+06

SCALED DENPINATOR COFFFICIENTS

0.1178E+13 0.1952E+13 0.8524E+12 0.1671E+12 0.1835E+11 0.1134E+10 0.2094E+08 0o1974F+06
0.87939+03 0.1000E+01

SCALED NUMERATOR COEFFICIENTS

0.1351;+13 001548E+13 05139E+12 Co5655E+11 0o5957E+09 004831E+07

AC 2 F = 0.1149E+13 0.1920E+13 0.8421E+12 0.1659E+12 0.1829E+11 0.1130E+10 0.2088E+08 0.1971E+06 0.8794E+03

ACOF = C.1000F+01

BC]F = 0.1149E+13 0.1317E+13 0.4372E+12 0.4810E+11 0.847CE+09 0.4084E+07

Figure 3.7-Inverted Scaling of the System Coefficients of the Remote Pole Case

DETEPMINANT OF E= C.5054D+19
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Figure 3.8-The Matrix E of the Remote Pole Case after Inverted Scaling
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CHAPTER 4

ALTERNATIVE METHODS FOR APPLICATION IN A PARAMETER

OPTIMIZATION PROGRAM

4.1 Introduction

The search algorithm of a parameter optimization program

must utilize other routines that execute some specific parts

of the computation, like the system mathematical representa-

tion and the solution of equations like the matrix equation

(1.6). The methods presented in this chapter are an attempt

to take more accurate and cost effective approaches to the

problems of the matrix equation solution and the system re-

presentation.

4.2 A Minimal Method for the Solution of the Matrix Equation:

AX + XA T=-X

The method for the solution of equation (1.6) that was

suggested by Palsson [10] and was described and analyzed in

sections 1.3 and 2.1 through 2.5 is extensive and for the

most part inefficient. The number of arithmetic operations

in this method is very large, which makes the solution of the

equation for many practical design problemns both expensive

and inaccurate.

The method proposed in this section minimizes the num-

ber of arithmetic operations needed to solve the equation.
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It takes advantage of the fact that the matrices X and X0

are symmetric and the matrix A is in phase variable form.

Since the matrix X is a symmetric n'th order matrix(n

being the order of the system), there are n(n+l) unknowns.

Consider the case of a 4'th order system. The matrix equation

in this case is:

0 1 0 0 1 1 x 1 2 x13 xl4
0 0 11 0 xl2 x22 x23 x24
0 0 0 1 xl 3 x2 3 x 3 3 x 3 4

-a0 -a1 -a 2 -a 3  x14 x24 x34 x44

x Xl2 x 3 x 0 0 0 -a.
x12 x22 x23 x24 1 0 0 -a1
+ x13 x23 x33 x34 0 1 0 -a 2

x14 x24 x34 x44 0 0 1 -a 3

12 022 023 024
013 023 033 034

x x x x
- 14 24 34 44

where the system coefficients a. and the elements x.. of the

matrix x0 are known, and the elements x.. of the matrix X

are unknown.

The following 10 independent equations for the solution

of the 10 unknowns are readily obtained from the matrix

equation:

47



2x12 = -x011
x22 + x13 = -x012
x23 + x14 -x013
x2 4 - a0 ll - alx 1 2 - a2 x1 3 - a3x1 4 x014
2x2 3  -x022

23 022
x 3 3 + x2 4  = -x023
x34 - a0x1 2 - alx2 2 - a2x2 3  a3x2 4  -x024
2x 3 4  -x 024

33
x44 - a0x1 3 - alx 2 3 - a2x 3 3 - a4x 3 4 = -34
-2a0x 1 4 - 2alx 2 4 - 2a2x34 - 2a3x44 = -x

044

The equations are slightly modified and reordered in groups:

1
group (a) x1 2  -x0

1

x2 3 = 2 x022
1

x3 4  - 2x 0 33

group (b) x1 4 = -x 2 3 - x 0 13

group (c) x1 3  -x2 2  x
12

x24 = -x33 - x
24 33 023

group (d) x2 4 - a0x11 - alx 1 2 - a2x1 3 - a3x1 4 =-x014
x23 - a0xl2 - alx22 - a2x23 - a3x24 =-x024

x44 - a0xl1 3 - alx 2 3 - a2x 33 - a3x34 =-x

-2a 0x1 4 - 2alx 2 4 - 2a2 x34 - 2a 3x4 4  =-x 34
34 3 44 044

The original set of 10 independent equations is easily re-

duced to a set of 4 independent equations in the following way:

The unknowns in group(a) are now known. The unknowns in group
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(b) ( here only x1 4 ) are directly obtained by substitution

of solved unknowns of group (a). The unknowns on the left

hand side of group (c) and all the unknowns that have been

solved are substituted into the equations of group (d) to

give the reduced set of 4 equations for the 4 diagonal un-

knowns:

1 1-a0xll+a2x2 2 - x33 =-x 0  -ax +l-a x --alx0 +x
02 33 0 - 3 0  2 3 022 2 1 0 2314 13 1 22 1 1 23

-alx22+a3x33 =-x 0  -a3x0 --a2x0 22x0 -a0x0
1 2 24 232 22 22 0 11

1 1
0x2 2 -a2x 3 34 x4 4 =-x0 34 3x0 33-alx 22-a 0 x034 33 22 12

2alx33-2a3x44 =-x 0 44 a2 x 033-2a x 23-2a0x 0 13

After these equations are solved foi the diagonal elements,

the unknowns of group (c) are obtained easily.

This method becomes an effective tool for the solution

of the matrix equation for systems of any order when its fol-

lowing general properties are realized:

1. The simplicity of the operations in the derivation of

the final set of n equations is the same for systems

of any order. These operations are simple substitu-

tions of one element by another, which is done by

manipulation of the unknowns indices. Relatively few

arithmetic operations are done in arranging the final

set of equations.

2. Because of the special arrangement of the unity ele-

ments in.the matrices A and AT, there are very simple

relations between the indices of the unknowns in each
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equation, which enable one to describe the reduction.

operation that was discussed above for the 4'th order

case in the following four steps general scheme:

a) The encircled elements are ll 1 x 1 3 x 1 4 X1 5 x1 6

the elements of group (a) which x22 2 x2 4 x 2 5 x26

are equal to corresponding ele- x3 3  x 35 x36

ments of the matrix X0 divided x44 x46

by 2. x55

x66

b) Consequently, the group (b) xll x13 1 x15 1

elements are obtained. x22  2 x24 25 x26

x33 3 x35 36

x44 4 x46

x55

x66

c) The group (c) elements are x1 1 x1 2 ,x1 3 1 4,-xl 5 x1 6

expressed in terms of the x22 23 2 4 x2 5 2 622 "23-24 x25A26
diagonal elements. x33 x34 3 5 x36

x44 x4 5,x46

5x5 x56

x66

d) All elements are substituted into the group (d) equations

that become the reduced set of n equations for the solution

of the n diagonal elements.
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In the machine procedure steps 3 and 4 will be built by index

manipulation in the instructions that form the reduced equa-

tions set.

After the reduction it is left to solve n linear equation

in n unknowns, or, in other words, it is left to solve an

equation of the type:

B x = c (4.1)

where x and c are n dimensional vectors and 3 is an n x n di-

mensional matrix. This reduction can be regarded as a reduc-

tion of the matrix equation (1.6) to the matrix equation (4.1),

or as a reduction of a set of n x n.linear .equations to a set

of n linear equations. For comparison, in the method suggest-

ed by Palsson the equation:

n
En 1 = Ei-lx0  (2.3)

1= 1 n

(which can be regarded as another reduced form of the ori-

ginal matrix equation) must be solved for the first column of

the state matrix X. Numerous arithmetic computations must be

done to obtain the E. matrices first, and then the sum vector1

on the right hand side of the equation (see sections 2.2 and

2.3). The number of operations that must be done to obtain

the matrix B and the vector c in equation (4.1) is rela-

tively small. There is no loss of accuracy at all in obtain-

ing the matrix B, and there is a minimal amount of arithmetic

computation in obtaining the vector c.

51



If the operations that must be done prior to the solu-

tion of equation (2.3) are compared to the reduction opera-

tions that must be done prior to the solution of equation

(4.1) in the new method, the advantage of this new method

can be realized. The computation of the remaining elements

of the X matrix which is done by simple substitutions in the

new method, is also much more complicated in Palsson's method,

which again involves matrix operations. (As was shown in

section 2.5, if the Model Performance Index is used and the

order of the model is small enough, the computation of the

remaining elements of the X matrix can be done by simple

shifting operations, in which case this part of the computa-

tion in the two methods will be of comparable simplicity.)

4.3 An Alternative Approach to the Derivation of a Linear

System Transfer Function

One method for the derivation of the transfer function

of a multi-loop system with a multi-input multi-output con-

trolled member was mentioned in section 1.4. For high order

systems the matrix operations of equation (1.21) require a

great deal of computation adjoined by loss of accuracy. As

was discussed before, significantly inaccurate system repre-

sentation may not be tolerated by the optimization procedure.

The approach suggested in this section is to obtain the

transfer function of the controlled member first (if it is

not given in this form) and then obtain the transfer function
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of the whole system by multiplication of the system members

transfer functions in the proper order. This approach

actually replaces the matrix operations by polynomial op-

erations. The accuracy of arithmetic operations between poly-

nomials has not been examined in this work, and while the

amount of computation would probably be smaller than in the

n dimensional matrix operations, improved accuracy is not guar-

anteed. When the system members are represented by their

transfer functions, numerator and denominator polynomials

can be multiplied and summed in any correct order, to give

the over-all transfer function (e.g. obtaining the transfer

function for each loop, proceeding from inner to outer loops).

If the controlled member is given by a set of dynamic

equations, its transfer function must be derived first. In

the case of a single input this can be done by application of

equations (1.20) and (1.21). (Notice that in many practical

cases the order of the controlled member may be appreciably

smaller than the order of the whole system, and the small di-

mensional matrix operations to obtain its transfer function

would not cause inaccuracies.) In the case of a multi-input

controlled member whose inputs may be coupled, the transfer

function can be derived by polynomial manipulation. Consider

a controlled member with two inputs and three outputs, whose

Laplace transformed dynamic equations are:

-Y1 + - 2Y 2 + 3 Y3 = n ui + r 2u2  (4.2)
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where y. is the i'th output and u. is the j'th input and ei

and mj are 3 dimensional vectors whose elements are poly-

nomials of the Laplace variable.

In the control system the controlled member outputs may

be f-d-back--t-o -i-t-ipu-pu through--cont-ro-l-components-.- All ....

the feedback paths between controlled member inputs and out-

puts can be arranged so that there is not more than one trans-

fer function in each path, as shown in the figure.

u 21 Y3
_- Control-

led Y2
1. Member

211

Figure 4.1 A Controlled Member with Coupled Inputs

If the transfer function between the input ul and any output

is desired, then u2 is expressed as:
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u 2 = Gl2Y 1 + G22Y 2 + G23Y 3  (4.3)

and substituted into equation (4.2):

(l - G 2) 1'+ (_ 2 -G 2 2 )Y 2 + (3 - G23 )Y 3 = mu1 12 1 2 22Y2 +(f3 23Y3 - 1

or

* * *
ZlY 1 + l2 + 3  = mu (4.4)

where the elements of the vectors 1 2 and 3 are ratios of-1' 2 -3

polynomials of the Laplace variable, since:

£- = l - G12-1 - 12

-2 = 2 - G22

3 = L3 - G23 (4.5)

The transfer function between the input u1 and any of the

outputs can be obtained by application of Cramer's rule, e.g.:

* *

yl m1 R2 -3
Ul i* * (4.6)

-1 -2 -3

To obtain the transfer function.as a ratio of two expanded

polynomials, the numerator and denominator determinants must

be expanded, which requires operations between the polynomial
* *

elements of the vectors mI, 2 , 13 etc. In many practical

cases some of the transfer functions G.. would be zeros or

simple gains and the others would usually be ratios of low

order polynomials, so that these operations would usually be
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simple and accurate.

It is interesting to realize that the operations between

the elements of the vectors actually replace the operations

that would have to be done between the transfer functions

G.. and the controlled member transfer function in the re-
1J

gular case without coupled inputs, to obtain-the overa-l1 -.. .

system transfer function. Thus, the coupling between the

inputs does not require additional operations but rather a

different arrangement of the controlled member equations and

the corresponding control system members, according to the

procedure that was described above.

4.4 A Method for Finding the Relationships between the

Transfer Function Coefficients and the Design Parameters

In a parameter optimization procedure a representation

of the ,control system must be done at each step of the opti-

mum search in order to evaluate its performance and to com-

pute the new step. The derivation of the system transfer

function may be a time consumming process, especially for

high order systems. In the algorithm that was discussed pre-

viously the transfer function must be computed twice for each

design parameter for the computation of the gradients at each

step. Inaccurate computation of the transfer function co-

efficients may cause problems like the "performance index in-

crease in half a step" and incorrect gradient values, arising

usually when the system transfer function is computed twice
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for close values of design parameters.

If the transfer function coefficients can be expressed

as simple functions of the design parameters, then after

these functions have been determined, the values of the co-

efficients at each step of the optimum search can be found

with rlativelt y -mall additional effort, --and the derivatives

of the system coefficients with respect to the design para-

meters can be found by directly deriving these functions.

The method proposed in this section applies to high

order complicated systems, where the computation of the

transfer function must be done numerically and the distribu-

tion of the design parameters cannot be followed easily, if

at all, through the computation from the initial system,

given ,by its components,to the final mathematical representa-

tion.

The design parameters may be system gains, time constants,

damping ratios and natural frequencies. The over-all system

transfer function will be considered in the following form:

b Sm + b S m-l+...+b
G(S) = -

Sn  n-
a S+ a S +...+an n-l 0

The coefficients : b. 0<i<m

a. 0<j<n

can be replaced by the coefficients: ck 0<k<m+n

where: b k=i
Ck i 0<i<m

k a k=m+j+l
k = a<j<
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When the system transfer function is derived by properly

ordered multiplication of its members transfer functions,

the over-all transfer function coefficients are sums of

products of design parameters and constant numbers. Each

one of the transfer function coefficients can be expressed

by the following general expression:

= k.IIP. (4.7)

where k. are constants and P. are design parameters. Ex-

pression (4.7) should be read as follows: "Each polynomial

coefficient is equal to the sum of all the combinatorial pos-

sibilities of products of the design parameters and constant

numbers". If there are two design parameters, for example,

each polynomial coefficient can be expressed as:

ck = kI + k2P 1 + k3 P2 + k4P1 P2 (4.8)

In the case of three design parameters the general expression

of the coefficients would be:

ck = k+k P +k P 2+k4+k P + P +k6 +k 7PP +k P1P2P3 (4.9)

In the general case of t design parameters the number of

products or the number of constants kj can be computed by the

combinatorial expressions:

0 1 2 L
C + C +C + ..... + C 2

where

Ck C!
cL (-k)! k!
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Example 4.1. The transfer function of the system in

Figure 4.3 is:

G(S) = 10S + 20

P 1 S 3 + S2 + (P1 + 10P 2 )S + (1+20P2 )

The constants k. for each polynomial coefficient are listed

in the following table:

coefficient k1 k2  k3  k4

c0 =b 0=20 20 .0 0 0

c =b1 10 10 0 0 0

c 2 =a 0 =1+20P 2  0 0 20 1

c 3 =al =P+10P 2  0 1 10 0

c 4 =a 2 =1 1 0 0 0

c5=a3=P1 0 1 0 0

Figure 4.2 The Constant k. in the Polynomial Coefficients of

Example 4.1

1+0.5s 20
1+P 1 s Is 2

Figure 4.3 A Control System for Example 4.1
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To find the relationship between the design parameters

and the transfer function coefficients it is necessary to

find the values of the constants k. of the general equation

(4.7)for each polynomial coefficient. Notice that the equation

(4.7) is linear in the constants k. (also see equations (4.3)

and (4.9)). Thus, the solution for the constants of each de-

sign parameter can be obtained by forming sets of enough

equations for each transfer function coefficient, to solve

for its constants.

To solve the 2n constants k. in a polynomial coefficient

2n equations are needed. These equations can be produced by

substituting 2n sets of design parameter values into the

given control system, and computing the corresponding sets

of polynomial coefficients. All the combinatorial products

of each set of design parameters are also needed to form the

equations.

In the case of two design parameters, for example, four

equations are needed to solve for the four constants in

each polynomial coefficient. Four sets of design parameter

values will produce the following set of equations for the

constants in the k'th polynomial coefficient ck:

Ck = k + P k2 + P k + P P 2  k1 1 2 1 2 4(1) (1) (1) (1) (1)
ck = k + P k + P k3 + P P k1 1 2 2 3 1 2

(2) (2) (2) (2) (2)
ck = kl + P k2 + P k3 + P P k4

(3) (3) (3) (3) (3)
Ck = k + P k + P k + P P k

(4) (4) (4) (4) (4)
(4.10)
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The solution of the constants k. can be obtained by Cramer's

rule. e.g.:

ck(1) P1(1) P2 (1 ) 1 2()c P P P P
(2 ) (2) (2) (1) ()

Ck P P P P
(2) (2) (2) (2) (2)

(3 ) (3) (3) (3) (3)
Ck P P P P

( 1 2 1 2
(4) (4) (4) (4) (4)

k = (4.11)

where:

1 P P P P1 2 1 2
(1) (1) (1) (1)

1 P P P P
1 2 1 2(2) (2) (2) (2)

D= 1 P P P P1 2 1 2(3) (3) (4) (3)
1 P P P P1 2 1 2

(4) (4) (4) (4)

(4.12)

Notice that the divider D does not depend on the system at

all, but only on the values of the design parameters that were

chosen to produce the equations. Also notice that in the num-

erator determinant only one column depends on the system, and

the other elements are functions of the. chosen design para-

meters. It follows that four sets of values for two design

parameters can be chosen once and then be used for all systems

with two design parameters. The divider can be computed for

these constant values independently of the control system.

Since the numerator determinants in the expressions of the

constants k. differ only by the values in the column of system

coefficients ck  and by the location of this column, the co-
(i)
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factors of all the elements of the determinant D can be

computed as system independent constants and be used for

the computation of each k.. This computation will then be
3

done by multiplying a set of system coefficients by the

corresponding constant cofactors and dividing by the constant

divider. This, of course, applies to any number of de-

sign parameters as well.

Example 4.2, Consider all systems with two design para-

meters. Four sets,of design parameter values are necessary

to produce the equations for the solution of the constants

kj, as was explained previously. The following sets may be

selected:

set 1: PI=1 P2=1

set 2: P =2 P2=1

set 3: Pl=1 P2=21 2

set 4: Pl=2 P 2 =2

The corresponding divider D (see equation 4.12) is 1 and the

cofactors are listed in the following table:

column cofactors

1 4 2 -2 -1

2 2 2 -1 -1

3 -2 -1 2 1

4 -1 -1 1 1

Figure 4.4 Cofactors for Systems with Two Design Parameters
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Suppose the constants k. in the polynomial coefficients of

the system in example (4.1) are to be determined by this

method. The computation of the constants in the coefficients

c0 and c3 is illustrated below:

c O =20

For the four sets of design parameter values we get:

c c c 0  = c0  20
(1) (2) (3) (4)

Multiplying the coefficients column by the cofactors we get:

k = 20*4 -20 2 +20(-2) '-20(-1) = 20

-k 2 = 20*2 -20.2 +20(-1) -20(-1) = 0

k 3 = 20(-2) -20(-l)+20-2 -20-1 = 0

-k 4 = 20(-1) -20(-1)+20*1 -20-1 = 0

and for:

c3 = P1 + lOP2

the coefficients column as obtained by substituing the design

parameters values into the control system and computing the

transfer function coefficients is:

c = 1 + 10 = 11
(1)

c 3  = 2 + 10 = 12
(2)

c 3  = 1 + 20 = 21
(3)

c3  = 2 + 20 = 22
(4)

63



and the constants for c3 are:

k I = 11*4 - 12-2 + 12(-2) - 22(-1) = 0

-k 2 = 11*2 - 12-2 + 21(-1) - 22(-1) =-l

k 3 = 11(-2)-12(-1)+21*1 - 22-1 = 10

-k 4 = 11(-l)-12(-l)+21*1 - 22-1 = 0

A program for the computation of c factors and dividers

using specified sets of design parameters values is given in

Appendix C. Values of cofactors and dividers are also listed.

The program is written for systems of up to six design para-

meters and the listed results are for up to four parameters.

The computation was found to be time consuming as the number

of design parameters gets larger. It should be noted,however,

that the values of the cofactors and the divider must be ob-

tained but once, and then be used for all systems of a given

number, of design parameters. The program also punches out

the values of cofactors, as listed in the table in Appendix

C. For the specific choice of design parameters sets the

divider value is 1 for any number of design parameters. To

use these results for finding the constants in the transfer

function coefficients according to the procedure described

above, the same design parameters sets must be used to obtain

the corresponding transfer function coefficients. The proce-

dure listed in the main program may be used to obtain the same

sets of design parameters.

Since the values of cofactors and dividers have been ob-
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tained independently of the control system itself (only the

number of design parameters needs to be specified), the

system's mathematical representation in terms of the design

parameters can be done by finding the corresponding numeri-

cal values of the transfer function coefficients, for the com-

putations of the constants k. in each coefficient. This

means that the system transfer function must be derived num-

erically a number of times, even when this proposed method

is used. This, however, is done before the optimization

process begins. For Z design parameters the transfer function

derivation must be done 2 times. This number is small in the

case of few design parameters (for three design parameters

the transfer function must be computed eight times). In the

case of many design parameters this number would get consid-

erably large (32 for five design parameters). It should be

noted, however, that in the currently used method, in the

case of five design parameters the transfer function must be

computed at least 30 times in three optimization steps. The

number of steps grows rapidly with the number of design para-

meters. Notice that the number of steps also grows with the

order of the system, and in the currently used method this

means more computations of the system transfer function,

while in the newly.proposed method the number of times that

the.transfer function must be computed depends only on the

number of design parameters.
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An even more significant advantage of the new method

would be the accuracy of the computation as outlined by

the following three points:

1. As can be seen in Appendix C for the specific choice

of design parameter values (only values of 1 and 2

are used) the divider is always 1 and all the cofactors

are small integers so that the computation of the

transfer function coefficients involves minimal

round-off errors imposed by the design parameters.

This computation can always be checked for.accuracy

by use of another set of design parameters values.

The resulting k. constants must be the same for any

choice of design parameters. If they vary for

different sets of parameters values, average values

can be taken.

2. Once the constants k. have been determined for each
3

tranfer function coefficient, the computation of the

coefficients at each step involves very few arith-

metic operations. Problems like the "performance index

increase in half a step" are not likely to happen.

3. The computation of the derivatives of the transfer

function coefficients with respect to the design para-

meters is very simple. For example, in the case of

three design parameters, using equation (4.9) we

have:
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9ck
S = k 2 + k 5 2 + k 6P 3 + k 8 2 3

ack
p k3 + k 5 P 1 + k 7P 3 + k 8 1 3
2

Dck
p - k4 + kP 1 + k7P 2 + k8 2
3

Finally, it should be noted that if the system transfer function

is computed by the state-space method (see equation 1.21),

the transfer function coefficients discussed in this section

appear divided by the coefficient :a. In this case the de-

pendence of an on the design parameters must be determined

separately. If the polynomial approach is used for obtaining

the transfer function (as proposed in the previous section)

no special consideration must be given to a
n
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The numerical accuracy problems arising in some stages

of a parameter optimization technique have been presented

and analysed. Special attention was given to the solution

of the matrix equation(l.6) and to the system mathematical

representation. The accuracy obtained at each stage of the

computation depends on the operations and the numerical

values involved.

A slight difference between the computed static sensi-

tivities of the control system and the model, when the Model

Performance Index is used, was found to cause some of the

severe inaccuracy problems encountered in the design by

parameter optimization. In the example case"the difference

was one part of 107 . Another major source of inaccuracy

is the inversion of the matrix En . Large values of the matrix

elements, which result in a large determinant value, may

cause severe inaccuracies even when digital overflow or under-

flow do not occur in the matrix inversion. This problem can

be handled by reduction of the matrix elements before its

inversion. The required reduction factor would depend on the

transfer function coefficients and on the order of the system.

No specific criterion for the value of the reduction factor
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has been established. However, keeping the matrix determin-

ant value below 1040 has given satisfactory results in the

cases that were examined. A situation where the diagonal

elements are significantly smaller than elements on their

right in the rows is also unfavorable. Scaling the system

coefficients is a useful means for conditioning matrices

and vectors in a desirable way. The importance of accurate

system representation to the optimization procedure has

been emphasized.

Alternative approaches to the problems of the system

mathematical representation and the solution of the matrix

equation (1.6) have been suggested for better accuracy and

cost effectiveness.

5.2 Recommendations

Some of the changes recommended here have been applied

to the parameter optimization program used at the Measure-

ment Systems Laboratory at M.I.T. and have given the desired

improvement in the accuracy of the computation. The recom-

mendations are listed below:

1. Fixing the system static sensitivity to be exactly

equal to that of the model (fixing the value of x01

at -1 when the model static sensitivity is 1) has

resulted in immediate improvement of the computed

results.

2. Reducing the elements of the matrix En prior to its

inversion when these elements are large has improved
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the accuracy appreciably. The decision to reduce the

matrix elements and the choice of the reduction fac-

tor can be built in the program by examination of the

characteristic coefficients and the system order.

Consideration of the general expression of the En

matrix (see Appendix A) may be useful in estimating

the magnitude order of the matrix determinant

without computing the determinant value itself.

3. Scaling the system coefficients can be used to con-

trol the conditioning of matrices and vectors. It

is recommended that the scaling operation be sepa-

rated from the reduction of the matrix elements that

was discussed above. Additional research should

establish more specific criteria for scaling the

system coefficients on a selective basis. Condi-

tioning the matrix En prior to its inversion is one

use of such scaling. The reduction of the matrix

elements, on the other hand, should be done routinely

whenever these elements are too large.

4. The option of inverting the matrix En in extended

precision has been suggested. The matrix inversion

program and the control cards are given in Appendix B.

5. The computation of the initial conditions can be done

in double precision without substantial additional

storage. This change has given significant improve-

ment in the computed results.
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6. As was discussed in section 2.5 some of the computa-

tion currently done in the determination of the ele-

ments of the state matrix X is unnecessary, since

many of these elements do not take part in the com-

putation of the performance index. Except for the

first column of the matrix X only the elements in-

cluded in the (Z+l)x(Z+l) left upper corner of the

X matrix must be computed (t being the order of the

model).

7. In the optimization program currently used a routine

for checking and correcting the matrix X to be sym-

metric is include. This is not neccesary since by

the shifting operation in the computation of the

columns of the matrix, discussed in section 2.5,

the computed X matrix is always symmetric.

8. The method for solving the matrix equation (1.6),

that was proposed in section 4.1 would provide a more

accurate and less expensive solution than the method

currently used. This method can replace the current

algorithm without additional changes in the optimiza-

tion program.

9. The method proposed in section 4.2 for the computation

of the system transfer function may be more accurate

than the one currently used, but its accuracy has

not been examined. It suggests a different approach,

avoiding high order matrix operations.
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10. The method proposed in section 4.4 is recommended

as an accurate and cost effective way for comput-

ing the system transfer function and the gradients

at each step of the optimization procedure.
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APPENDIX A

THE MATRICES E.

The first three E. matrices are given below:

an- 1 -1 0 0 ....... 0 0

0 an-1 -1 0......0 0

0 0 ............. an- 1  -1

a 0  a l............. an-_2  2an- 1

an_ 2  -an- 1  1 0 0..............0 0

0 an- 2  a n-i 1 0 0 00 a a 1 1 0 0
n-2 n-n

0 0 0............ a -a 1n-2 n-1

-a 0  -a -a 2 .......... an- 3  0 -2a 1n-
2

2a a _ -a 0+2a a -a +2a an 1 .......- a 3+2an a2 2 anl
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an- 3  n-2 n- 1  -i 0

0 an- 3  -an- 2  an- 1  -1 0 0

0 0 an_ 3  an-2 a -1 0

E3=
0 0 an-i -1

a 0  al 0 2an- 1

2-2a an- a 0 -2a 1a 2an-3-an lan-2 -2a

2 2
+2aal 2a1 a +2a-2a............ 2a 3

+2a a 2  -2a an-2 n-l +2 3 n-2 n-

an-1

The first and last columns of E4 and E5 are given below:

a 0n- 4  0

0
0 1

E4= -a 0  -2an- 1
2

2a a 2an
0 n-1 n-1

2 3
-2a an-1 -2a _3+2a n _ a _-_2an 1

3 2 4
2 aan 3 -2a a a +2 a ... .. 4a_ a -4a a2_ +2a

0 n-3 0 n-2 n- 0 n-1 n- n-3 n-2 n-1 n-7
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n-5

0 0

6 -1
a 0  2an-

-2a2
E5 = a 0 an- 1  n- 1

2 2a -2a a +2a2a a 2an-3 2an-2 n- l +2an -

2 43 -4a a +4a a2 -2a
-2a a +2a a a -2a a ln-3 n-1 n-2 n-1 n-1

4a a a -4a a a_ +2a a .... 2a -2a a +2a a0 n-3 n- 0 n-2 n-1 0 n- n-5 n-4 n-i n-3 n-2
2 3+2a a -,6 a an-2 n-11 n-2 n-1
2 5+6a a +2an-1 n-3 n-i

As the computation of the E. matrices proceeds, the elements

siiift upwards in the columns, inverting signs, while the

last element of, say, the th column is computed by multi-

plying the k4th column of the previous E matrix by the last

row of the system's matrix A.
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APPENDIX B

A PROGRAM FOR

MATRIX INVERSION IN QUADRAUPLE PRECISION

The program is a modification of the IBM/I Scienti-

fic Subroutine Package MINV program for extended precision

and for utilization by a FORTRAN main program. Also

listed is the control cards set up for the IBM/370 system

at M.I.T. Information Processing Center. This set up may

change due to improvements of the system.
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B.1 The Matrix Inversion Program

MINV.. MINV 10
/****+*** ***************************+*****************************/MINV 20

t- */MINV 30
/* TO INVERT A MATRIX */MINV 40
/* */MINV 50
/,***********.**+***************#**** ********************9***********/+MINV 60

PROCEDURE (AQ,N,DO,CONQ)OPTIONS(FORTRAN),. *** 7
PUT SKIP L IST('JUST ENTERED MINV');

PUT SKIP DATA(AQNDQ,CONQ){
DECLARE MINV 80

ERROR EXTERNAL CHARACTER(1), MINV 90
(I,J,KN,L(N),M(N)) MINV 10-0

FIXED BINARY* MINV 110

FIXED BINARY(31,0),
-- (BIGA,HOLDDCONS) BINARY FLOAT(109),

A(1:NI:N) BINARY FLOAT(109),
DC(I:N,1:N) BINARY FLOAT(109),
(DQ,AQ(20,20),CONQ) BINARY FLOAT(53),./*DOUBLE PRECISION INPUT ***131

/* BINARY -FLOAT (53),. /*DOUBLE PRECISION VERSION /*D*/MINV 140
S.. */MINV 150

DO I=1 TO N,.
DO J=1 TO N,.
A(I,J)=AQ(t,J),.
END,.
END,.
CON=CONQ,.

ERROR=0O',. MINV 160
IF N LE 0 MINV 170
THEN DO,, MINV 180

ERROR='1,. /* ORDER OF MATRIX = *. /MINV 190
GO TO FIN,. MINV 200
END,. MINV 210

IF CON= 0 MINV 220



THEN S =1.OE-5,. /* SINGLE PRECISION VERSION /*S*/MINV 236:'~.
/*THEN S =1.OE-15, /* DOUBLE PRECISION VERSION /*D*/MINV 240ELSE S =CON,. MINV 250

IF N = 1 /* INVERT A SCALAR */MINV 260
THEN 00,. MINV 270

0 =A(I,l),. MINV 280
IF ABS(D) LE S MINV 290
THEN DO,. MINV 300

ERROR=2*,,. MINV 310
END,* MINV 320ELSE A(191) = 1/O,. MINV 330GO TO FIN,. MINV 340

END', MINV 350
D =1.0. /* SEARCH FOR LARGEST ELEMENT */MINV 360

00 K = 1 TO N,. MINV 370
L(K) =Kq, MINV 380
M(K) =K,. MINV 390
BIGA =A(KK),. MINV 400

DO I=K TO N,. MINV 410
00 J=K TO N,. MINV 420
IF ABS(BIGA) LT ABS(A(I.,J)) MINV 430
THEN DO00 MINV 440

BIGA =A(IJ),. MINV 450
L(K) =1,. MINV 460
M(K) =J,. MINV 470
END,* MINV 480

ENO. MINV 490
END,* MINV 500

J =L(K),. /* INTERCHANGE ROWS */MINV 510
IF L(K) GT K MINV 520
THEN DO,. MINV 530

DO I = 1 TO N,. MINV 540
HOLD =-A(K,I),. MINV 550
A(K,I)=A(JI),, MINV 560
A(JI)=HOLD,. MINV 570
END,. MINV 580

ENp,. . MINV 590
I M(K), /* INTERCHANGE COLUMNS */MINV 600



IF M(K) GT K MINV 61b
THEN DO,, MINV 620

DO J = 1 TO N,o MINV 630
HOLD =-A(J,K),. MINV 640
A(JK)=A(J,-I),. MINV 650
A(JI)=HOLD. MINV 660
END,* MINV 6.70

END,. MINV 680
IF ABS(BIGA) LE S MINV 6,90
THEN DO*, MINV 7,00

D =0.0,. MINV 7,10
GO TO COMP,. MINV 720
END,. MINV 730

/* */MINV 740
/* DIVIDE COLUMNS BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS */MINV 750

CONTAINED IN BIGA) */MINV 760
DO-I = I TO N,, MINV 770
IF I -NE K MINV 780
THEN A(IK)=A(IK)/(-A(KK)),. MINV 790
END . . MINV 800
00 I = 1 TO N,,-- /* REDUCE MATRIX */MINV 810
IF I NE K MINV 820
THEN DO. MINV 830

DO J = 1 TO N,. MINV 840
IF J NE K MINV 850
THEN A(IJ)=A(I,K)*A(K,J)*A(I1J),. MINV 860
END,. MINV 870

END. - MINV 880
END, * MINV 890
00 J = 1 TO N,. MINV 900
IF J NE K /* DIVIDE BY ROW PIVOT */MINV 910
THEN A(KJ)=A(K,J)/A(KK),. MINV 920
END,. MINV 930

D =D*A(K,K),. /* COMPUTE DETERMINANT */MINV 940
COMP. . MINV 950

IF ABS(D) LE S MINV 960



THEN DO,. MINV .97 D'
ERRORz=2',. /* DETERMINANT IS ZERO */MINV 980
GO TO FIN,. MINV 990
END,. MINVlb00

A(K,K)=1.0/A(K,K),. /* REPLACE PIVOT BY RECIPROCAL */MINV1010
ENDo MINVIO20

/* */MINV1030
/* FINAL ROW AND COLUMN INTERCHANGE */MINV1040
/* */MINV1050

K =N,. MINV1060
LOOP** MINV1070

K =K-1,. MINVI080
IF K GT 0 MINV1090
THEN DO,. MINV1100

I =L(K),. MINVll10
IF I GT K MINV1I20
THEN DO,. MINVI 130

C DO J = 1 TO N,. MINVl140
HOLD =A(JK),. MINV115O
A(JK)=-A(JI),, MINV1160
A(JI)=HOLD,* MINV1I70
END,. MINV1180

END,. tINVI190
J =M(K),, MINV1200
IF J GT K MINV1210
THEN DO,. MINV1220

DO I = .1 TO N,. MINV1230
HOLD =A(KI)o, MINV124O
A(K,I)=-A(J, I), MINV1250
A(J, I)=HOLD,0 MINV1260
END,* MINV1270

END,* MINVI280
GO TO LOOP,. MINV1290
END,. MINV1300

FIN. MINV1310
DQ=D,.



AQ=A,.

DO I = 1 TO N;
DO J = 1 TO N;
AQ(I,J) = A(I,J);
END;
END;
PUT SKIP LIST('ABOUT TO RETURN FROM MINV);
CLOSE FILE(SYSPRINT);

RETURN,. -.... MINV1320
END,. /*ENO OF PROCEDURE MRINV */INV1330
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B..2 Control Cards Set Up for IBIK/370 System at M.I.T.

1/ NAME 1,CLASS=AREGIQN=350K

/*MAIN TIME=2,LINES=6,CARDS=o
-/1EPR-XEGOR.-.__
//C*SYSIN DO

FORTR AN cards

-//STEP-2-EXEC--PL-KCLG-P-ARM.C=.CS(48) 9OBJECT-,NORUNCQMRATIBLE',-0-
iPARM.G='COMPATIBLEI

f-tC.SYSINDD *.CBLSZzOO__

~'~Icards

//L.SYSLIB DO DSN=U.M8230.7182.SU6R.PALSSDISP=SHR

IDO
/! ~DD-DSN=S-YS2-,-SR.-SUBRRDSSH.____ _____

// DD DSN=SYS1.FORTLIRDISP=SHp

//L.SYSIN DO

OBJECT cards

ENTRY MAIN

//GFTO6FOO1 DO SYSOUT=A9DCB=(RECFM=VBALRECL=137,BLKSIZE=203
6 )

Z/.'GFTO'SF01 fDD *rC BLKSLIZEFZODO _______-__________

DATA cards
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APPENDIX C

THE SYSTEM INVARIANT DETERMINANTS AND COFACTORS

A program for the computation of the system invariant

determinant and its cofactors for the determination of the

relationship between the system coefficients and the design

parameters is listed. The program computs determinants and

cofactors for systems of up to six design parameters. Also

listed are the results for specified sets of des:gn para-

meters, that can be used for the computation of the constants

kj, as described in section 4.4.
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C.1 The Computer Program

DIMENSION P(6),A(64,64),8(64,64) ,DET(64)
1002 FORMAT(' ,9ODETERMINANT=tF8.1/' THE COFACTORS OF THE I COLUMN

1OF THE NUMERATOR DETERMINANT,'/' CORRESPONDING TO THE CONSTANT K(I
2),ARE LISTED IN THE I GROUP#//' I'/)

1003 FORMAT('I','NUMBER OF DESIGN PARAMETERS = *,ll/ THE FOLLOWING SET
IS OF DESIGN PARAMETERS VALUES ARE USED' )

1004 FORMAT(I3,3X-, 10(F8.192X) /(6X,1O(F8.12X)))
1005 FORMAT(1OF8.1)
1006 FORMAT(' 9,0SET ',12, =',6(F7*1))

DO 410 L=1,6
WRITE(6,1003)L
Li=L-I
L2=L-2
L3=L-3

co L4=L-4
II=1
DO 10 Il=1,L

10 P(I1)=1.
WRITE(6,1006)II(P(J),J=1,L)
CALL AMAT(P,IIA,L)
00 20 Il=1,L
II=II+1
P(II1)=2.
WRITE(6,1006)II,(P(J),J=1,L)
CALL AMAT(PIIA,L)

20 CONTINUE
IF(L.EQ.1) GOTO 200
DO 30 11=1.L1

DO 30 12=Il1L
II=II+l
P(I1)=2.
P(12)=2.
WRITE(6,1006)II9(P(J),J=1,L)
CALL AMAT(PIIA,L)

-30 CONTINUE



IF(L.EQ.2) GOTO 200
DO 40 11=1L2

00 40 12=11,*L1
121=12+1
DO 40 13=1219L
II=II+1
P(11)=2.
P(I2)=2.
P(13)=2.
WRITE(6,1006)II,(P(J),J=1,L)
CALL AMAT(PII,AL)

40 CONTINUE
IF(L.EQ.3) GOTO 200
DO 50 11=1,L3
Ill=II+1
DO 50 12=Ill,L2
121=12+1
DO 50 13=I21L1
131=13+1
00 50 14=131,L
II=II+l
P(Il)=2.
P(12)=2.
P(13)=2.
P(14)=2.
WRITE(6,1006) II, (P(J) J=1#L)
CALL AMAT(P,IIAL)

50 CONTINUE
IF(L.EQ.4) GOTO 200
00 60 I=1,L4
111=11+.1
DO 60 12=ll1L3
121=12+1
DO 60 13=I21,L2..... ....... .... I I=I'3 I



DO 60 14=131,L1
141=14+1
00 60 15=141,L
II=II+1
P(11)=2.
P(12)=2.
P(13)=2.
P(14)=2.
P(15)=2
WRITE(6,1006) II(P(J) .J=1L)
CALL AMAT(PII,AL)

60 CONTINUE
IF(L.EQ.5) GOTO 200
II=II+1

.. P(I1)=2.
P(12)=2.
S(13) =2.
P(14) =2.
P(15)=2.P(I5)=2.
P(16)=2.
WRITE(6q1006)IIq(P(J)J=1#L)
CALL AMAT(PqIIAL)

200 LL=2**L
I=1
DO 210 II=1,LL
DO 210 JJ=1,LL

210 B(IIJJ)=A(II,JJ)
IX=0O
KC=LL
J=0
GOTO 300

100 J=J+1
IF(J.GT*LL) GOTO 410
I=0

101 I=I+1
--- IK=0



DO 221 II=1LL
IF(II.EQ.I) GOTO 221
IK=IK+1
JK=O0
00DO 220 JJ=1,LL
IF(JJ.EQ.J) GOTO 220
JK=JK+1
B(IKtJK)=A(IIqJJ)

220 CONTINUE
221 CONTINUE

KC=LL-1
300 IF(KC.EQ.1)GO TO 31

IREV=O
DO 22 IT=1KC
K=IT

9 IF(B(KIIT))21911.21
11 K=K*1

IF (K-KC)9,9,51
21 IF(IT-K)12,14,51
:12 DO 13.M=1IKC

TEMP=B(IToM)-
B(ITtM)=B(K,M)

13 B(KM)=TEMP
IREV=IREV+I

14 IS=IT+I
IF(IS.GT.KC) GOTO 22
DO 17 M=ISKC

18 IF(B(MIT))19 17,19
19--TEMP=B(M,IT)/B(IT,IT)

DO 16 N=ITKC
16 B(M,N)=B(M,N)-B(IT,N)*TEMP
17 CONTINUE
22 CONTINUE

DET(1)=1.
DO 2 IT=1,KC

2-DET(I)=DET(I)*B(ITIT) .



DET(I)=(-1.DO)**IREV*DET(1)
GOTO 3.10

51 DET(I)=0.
GOTO 31.0

31 DET(I)=B(1,1)
310 IF(IX.EQ.O) GOTO 400

IF(I.EQ.LL) GOTO 320
GOTO 101

320 WRITE(6,1004)J,(DET(I),I=1,LL)
WRITE(7,1005) (DET(I),I=#LL)
GOTO 100

400 WRITE(6,1002) DET(1)
Ix=I
GOTO 100

410 CONTINUE
STOP
END
SUBROUTINE AMAT(PoIIA,L)
DIMENSION A(64,64),P(6)
Li=L-1
L2=L-2
L3=L-3
L4=L-4
JJ=1
A(IIJJ)=1.
DO 10 11=1,L
JJ=JJ+1

10 A(II,JJ)=P(I1)
IF(L.EQ.1) GOTO 100
DO 20 11=1,L1
Ill=11
DO 20 12=111,L
JJ=JJ+1
A(II,JJ)=P(II)-P(I2)

90 CONTINUE



IF(L.EQ.2) GOTO 100
DO 30 1=1tL2

DO 30 I2=I1llL1
121=12+1
DO 30 13=I21L
JJ=JJ+1
A(IIJJ)=P(11)*P(12)*P(13)

30 CONTINUE
IF(L.EQ.3)GOTO 100
DO 40 Il=1,L3

00 40 12=I11llL2
121=12+1
DO 40 13=I21L1
131=13+1
D00 40 14=131,L
JJ=JJ+1
A(IIJJ)=P(II)*P(12)*P(13)*P(14)

40 CONTINUE
IF(L.EQ.4) GOTO 100
DO 50 Il=1,L4
l11=I11
DO 50 I2=11,L3
121=12+1
DO 50.13=1219L2
131=13*1
DO 50 14=131L1
141=14+1
00 50 15=141,L
JJ=JJ+1
A(II,JJ)=P(Il)*P(12)*P(I3)*P(14)*P(15)
IF(L.EQ.5) GOTO 100
A(IIJJ)=P(1)*P(2)*P(3)2P( 4)*P(5)*p(@)

50 CONTINUE
100 00 500 I 1,L



500 P(I)=1.
RETURN
END
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C.2 Determinant and Cofactor Values for Specified Design Parameters

NUPEER CF CESICG PARAFFTERS = I
THF FCLLChING SETS CF CESICG PaRA'ETEJS VALUES APE USEC
SET I 1.C
SE1 2 2.0
DLTERFINANT= 1.0
TIE COFACTORS CF THE I CCLUIN CF THE hUPERATCP CETERH)INANT,
CCHRESPCCING TO TE, CONS[ANT KI ),ARE LISTEC IN THE I GRCLP

1 2.C 1.0
2 1.0 1.0

NUPFER CF CESICN PARAMETERS = 2
ThE FCLLClING SETS OF CESIGN PHRAMETERS VALUES ARE USED
SET I = 1.C 1.0
SET 2 = 2.C 1.0
SETI = 1.0 2.0
SET 4 = 2.0 2.0
OFTERMINANT= 1.0
THE CCFACTCRS OF THE 1 CCLUN OF THE NUPERATCR DETERPIN1NT,
CCRRESPCCING TC TIE CCNSTANT K(I),APE LISTEC IN ThE I CROLP

1 4.0 2.0 -2.0 -1.C
2 2.C 2.0 -1.0 -1.0
3 -2.C -1.C ?.C I.C
4 -1.C -1.0 1.C I. . . .. .. .. ...... - - _... .. ...



NUMBER OF DESIGN PAR1'EIES 3=

TVE FCLLCWING SETS OF CESIGN PARAMETERS VALUES ARE USED

SET 1 1.0 1.3 1.0

SET 2 = 2.C 1.0 1.0 ... -

SET 3 = 1.C 2.0 1.C
SET 4 = 1.0 1.0 2.C
SET. 5 = 2.C 2.0 1.0
SET 6 = 2.C 1.0 2.C
SET 7 = 1.0 2.0 2.0

SET R = 2.0 2.0 2.0
DETERMINaNT= 1.0
f E CCFACTCRS OF TI-E I CCLUMN OF THE NUMERATOR nEIERIINAN[,

CCRRESPCD01G ITC T-E CCNSTANT K(1),APE LISTEC IN TFE I CRCLP

I E.C 4.3 -4.0 4.0 2.C .- .C 2.C 1.0

2 4.C 4.0 -2.0 2.0 2.0 -2.C 1.C 1.0

3 -4.C -2.0 4.C -2.0 -2.0 1.C -2.C -1.0

4 4.0 2.0 -2.0 4.C 1.C -2.C 2.C 1.0

5 2.C 2.3 -2.0 1.0 2.0 -1.0 1.C I.C

6 -2.C -2.0 1.C -2.C _ -1.C 2.0. -1.C -1.0 - ...-------.-.-

7 2.0 1.0 -2.C 2.0 1.C -1.C 2.C 1.0

8 1.C 1.0 -1.0 1.0 1.0 -1.0 1.C 1.0

CD
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